

SELF-ADAPTIVE PRODUCTION IN HIGH VOLUME OPTICAL ASSEMBLY

HIGH VOLUME OPTICAL ASSEMBLY: A CHANCE FOR ML!

Conditions in Production:

- High OEE (Overall Equipment Effectiveness) requirements
- Fast & frequent product ramp-ups
- Complex production processes
 - > Interdependence of parameters
 - > Abundance of data

Machine Learning* can provide automated solutions to your production needs

*data driven model calculation

Valid Pieces

Total Pieces Produced

MACHINE LEARNING IN OPTICS ASSEMBLY: CHALLENGES

- Short product life cycle
 - > Low model life time
- Lack of unified standards for packaging
 - Model transfer constrained
- Global value chains
 - > No data scientists available on the factory floor

How to make Machine Learning field-proof?

Our answer:

robust infrastructure, self-adaptive production & self-learning models

INFRASTRUCTURE: EDGE, CLOUD & MACHINE

- Edge computation: fast response times
- Cloud model training: effective models by improved data handling
- Machine integration: easy implementation directly in process
- Siemens infrastructure: secure connections

SIEMENS Industrial edge

SELF-ADAPTIVE PRODUCTION

Machine Performance improvement by direct feedback to machine

- Machine parameters adapt automatically to changing conditions
- Direct feedback no human interaction
- Complete automation

ADAPTIVE MOTION

Optimum motion is a trade off:

- High throughput
 - > fast motions
- High yield
 - accurate motions
 - > Early alerting to prevent part loss
- Field conditions
 - Performance degradation over time

field

Measurement is not feasible without sacrificing throughput

OUR SOLUTION: ADAPTIVE MOTION

Finding optimum balance between precision & speed

- In <u>real time</u> & <u>during production</u>
- No measurement required in production
- Flexible configuration of response

Repeatability close to max spec, slow down motion

Yield at risk, stop production

Adaptive motion dashboard

OUR OFFER

>10% OEE improvement* achieved by

- 1. UPH improvement by self-adaptive production (multiple use cases)
- 2. Yield & Process control by automated analysis & alerting
 - Custom visualization, analysis & alerting for Process Parameters & KPIs
- 3. Downtime reduction by Predictive maintenance
 - Prediction of critical component failure & alerts for preemptive repair
- *OEE: Overall Equipment Effectiveness = Availability x relative UPH x Yield

ficontec photonics assembly & testing

Finding out more ...

Online:

- Homepage
- 'ficonTEC Insider' Blog
- LinkedIN / Twitter
- Vimeo / YouTube
- Locations & Contacts

C2M ■ Fraunhofer

AIM

BLOG

