Projects & Initiatives

Projects & Initiatives

How and where does ficonTEC contribute
to the photonics assembly and testing development scene?

As part of the on-going development of our technology base, and also as part of our contribution into the development of the sector, ficonTEC is pleased to have previously been, and be currently actively involved and associated with numerous national and international projects and initiatives.

For the activities and interactions listed below – and so too for any developments necessary for specific customer requirements – ficonTEC relies on its dedicated R&D Center, located close to ficonTEC HQ. Manned by highly qualified, mostly Ph.D.-level (over 70%), but also highly experienced personnel, the team is central to ficonTEC’s regular and respected contributions to the assembly and testing development scene. The R&D Center is equipped with a variety of specialized assembly machines, a 3D printing system, die testing machines, wire bonders, cross-section capabilities, a die shear tester, etc., and has achieved several significant milestones in photonics micro-assembly.

Want to know more about ficonTEC’s assorted project involvements?

Contact us
logo-tyndall
logo-inpulse
logo-pixxap-photonics
logo-aim-photonics
teriphic-logo

Tyndall National Pilot Line

An integrated photonics manufacturing eco-system at Tyndall National institute

Tyndall National Institute and ficonTEC Service have come together along with other industry partners to build the National Photonics Manufacturing Pilot Line, an integrated photonics manufacturing ecosystem designed to advance disruptive photonic technologies from concept to commercialization.

The Pilot Line, located within the Tyndall Institute (Cork/Ireland) will engage with sectors such as MedTech, Life Sciences and Communications. Tyndall is already the location of the PIXAPP Pilot Line Gateway (see below) and the Irish Photonics Integration Centre, which collectively provide access to leading-edge technology, highly skilled researchers and valuable infrastructure.

logo-tyndall
photonics-west-2019-team

ficonTEC will establish a unique facility with a dedicated support team to develop advanced photonics manufacturing equipment for emerging markets. The Pilot Line will additionally train the future photonics workforce in advanced manufacturing processes, with particular focus on MedTech, a valuable sector not only in Ireland.

Funding is being provided by the Irish Government through its Disruptive Technology Innovation Fund (a €500m fund established under Project Ireland 2040), and is run by the Department of Business, Enterprise and Innovation, with administrative support from Enterprise Ireland. Access to the Pilot Line is open to any and all companies around the globe looking to quickly realize future integrated photonics devices within a dedicated ecosystem.

Quantifi Photonics

Mixed-signal electro-optical measurement instrumentation for integrated photonics

ficonTEC and Quantifi Photonics (Auckland, New Zealand), formerly known Coherent Solutions, have entered into a collaborative partnership to advance electro-optical measurement capability for use in volume testing within the manufacturing cycle of integrated photonic devices.

As optical and electrical technologies become more miniaturized, complex, and increasingly integrated with one another’s underlying architecture, the more inefficient and frustrating it is for process engineers to implement separate electrical and optical test and qualification procedures. To avoid this, engineers require fully automated systems that can perform complex precision alignment and assembly, as well as combined electro-optical I/O measurements for complex integrated photonic devices – from singulated dies, through to wafer-level and even up to fully packaged devices.

The two companies are initially focusing their sights on manufacturers of modules and components for telecom and datacom, and on systems for testing high-density VCSEL systems as used in 3D optical sensing/imaging applications, such as for automotive LIDAR and for the facial recognition modules found in smartphones.

Vimeo

By loading the video, you agree to Vimeo's privacy policy.
Learn more

Load video

Automated wafer-level tester demo

ficonTEC WLT Demo-Unit

A PXI-based, fully automated wafer-level test demo-system

fiber-array-over-waveguides

Multi-fiber optical I/O probes positioned over the wafer

ficonTEC WLT Demo-Unit

Details of the optical PXI front-end modules

PhotonicLEAP

Disruptive low-cost photonic packaging and test technologies

PhotonicLEAP will develop disruptive wafer-level PIC module integration, packaging and test technologies that are designed to reduce the costs of PIC production by more than a factor of 10, thus promoting a new global standard for cost-effective PIC devices and high-throughput PIC testing, and in turn revolutionising existing applications and creating completely new markets.

PhotonicLEAP will use these disruptive technologies to produce a revolutionary surface mount technology (SMT) PIC package, which for the first time incorporates multiple optical and electrical connections and that can be scaled from low to very large volumes.

The project will validate these technologies through two state-of-the-art demonstrators, including a high-speed optical communication module and a portable medical device for cardio-vascular diagnostics. Furthermore, the technologies will be transferred to the flagship European PIC Packaging Pilot Line, PIXAPP, for future commercialisation. PIXAPP has an extensive and growing user-base across multiple global markets.

PhotonicLEAP is a European H2020 collaborative research project and is due to run until the end of 2024.

Optik-Net

Direct flexprint technology for cost-effective integration of optical waveguides and electronics

Within the OptiK-Net project, an interdisciplinary team of industrial and research organizations will establish a process chain for the world’s first industrial solution for cost-efficient and flexible optical networks based on PCBs and printed polymer waveguides. An optical communication interface with high data rate is to be built as a first demonstrator.

ficonTEC’s role within the project is, amongst others, to develop a new assembly process using a 6-axis robot to handle, passively align and optically and mechanically connect the flexible polymer waveguides to the optical board, while minimizing assembly times and maximizing throughput.

OptiK-Net is a BMBF-funded project within the funding initiative ‘Miniaturisierte optische Systeme hoher Integrationsdichte’ (‘Miniaturized optical systems with high integration density’) and is due to run from October 2019 until September 2022.

Also interesting: R&D – OptiK-Net to develop direct flexprint technology…read more

CALADAN

Reducing manufacturing cost of Terabit/s-capable optical transceivers

The CALADAN project brings together a supply chain that will enable automatic wafer-scale assembly of Terabit/s-capable optical engines through the use of the Micro-Transfer Printing (mTP) technology. SiGe BiCMOS drivers and receivers and GaAs quantum dot lasers will be integrated onto silicon photonic integrated circuits, fully at the wafer level.

Coordinated by IDLab, an imec research group at the Ghent University, the ultimate goal is the fabrication of optical transceivers at significantly lower cost and higher throughput than what is achievable using current fabrication methods. This requirement is driven by the growing capacity of data center servers, and so too the links between those servers.

 

ficonTEC role within CALADAN will be to demonstrate automated fast ‘through-substrate’ fiber-alignment and bonding capability. A key aspect is to show that via the development of a fast fiber attachment process, how the optical packaging-costs and cycle-times can be reduced in a manufacture environment. ficonTEC already has a very fast handling and assembly process for optical fibers that allows fiber align-&-attach with sub-micron accuracy.

CALADAN is an initiative of the Photonics Public Private Partnership (PPP) and has received funding from the European Union’s H2020 innovation programme. It is due to run from January 2019 until December 2022.

 

iQonic

iQonic project technology provider

Opto-electronic manufacturing is undergoing an evolution of the manufacturing and associated processes. This trend, together with the pressure to control production costs, imply that systems configurations need to change more frequently and more dynamically. In this scenario, automation and sustainability strategies are the most logical route to reduce the production costs. This alone lies right on our own product strategy path.

iQonic also aims to offer a scalable zero-defect manufacturing platform covering the overall process chain, ranging from the design of new opto-electronic components and their required optimized process chain, their assembly process, to their disassembly and reintroduction into the value chain at their end-of-life through eight scalable strategies.

logo-iqonic

inline-system-assembly

ficonTEC is part of iQonic and is fulfilling the role of technology provider. The company has wide experience with photonics assembly and testing processes, and it is supporting the project in the design of a reconfigurable process chain and in the development of a new type of handling tool interface for opto-electronic assembly processes.

Update, November 2020: Sensap AG visits ficonTEC for the implementation of the data flow among the ficonTEC AL500 assembly machine. Read the news item here

Leaflet Poster

TERIPHIC

Moving on to Terabit transceiver modules, and how to assemble them

TERIPHIC’s goal is to go beyond current 400G transceiver module standards and push development to Terabit transceiver modules having at least 2km reach. To achieve this, TERIPHIC will leverage photonic integration concepts and develop a seamless chain of component fabrication, assembly automation and module characterization processes as the basis for high-volume production lines.

ficonTEC will contribute by optimizing assembly processes and hardware on a ficonTEC CL1500 system already in use at the Fraunhofer HHI, thus supporting the development of the required automated assembly hardware appropriate for high-volume manufacturing for as yet to be detailed module-specific align-&-attach processes. In the final stages of the project, ficonTEC will put forward a concept for the entire high-volume production line.

teriphic-logo

Ultimately, the new transceiver design introduced by TERIPHIC will allow significant cost savings, not only due to assembly automation at the TOSA/ROSA stage, but also at the packaging level, and resulting in a cost below 1€/Gbps for the transceiver modules. TERIPHIC is an EU H2020 project starting January 2019 and due to run for 36 months. More details can be found at Fraunhofer HHI and via the EC’s CORDIS website.

So far, ficonTEC has developed a highly elaborate gripping tool for emitter and detector arrays. When these arrays are gripped, the outermost devices can still be probed and operated to allow for fast and precise active alignment. The arrays are then aligned and attached to a polyboard arrayed waveguide grating as part of the transmitter and receiver optical subassemblies (TOSA/ROSA) of the Terabit optical transceivers being developed within the TERIPHIC project. Novel alignment concepts are being investigated to allow for a precise yet fast alignment and attachment of the components, which then will be part of a high-volume production line concept for the Terabit optical transceivers.

The gripping tool as well as the alignment concepts currently being evaluated can later be transferred to comparable processes, where component arrays (e.g. arrays of emitters, detectors, fibers, lenses, etc.) must be aligned actively, thus enabling new markets to be explored.

TERIPHIC is an EU H2020 project starting January 2019 and due to run for 36 months. More details can be found at Fraunhofer HHI and via the EC’s CORDIS website.

Article – TERIPHIC consortium goals in the News

The Horizon 2020 funded consortium TERIPHIC is developing new optical transceiver modules used in Internet datacenters that will reduce power consumption by 50% per GB/s and in turn see lower carbon emissions…read more

YouTube

By loading the video, you agree to YouTube's privacy policy.
Learn more

Load video

TERIPHIC ICT project

MASSTART

Mass manufacturing of transceivers for the Terabit/s era

The inherent issue of limited throughput and the associated high cost in photonics assembly and test processes is unsurprisingly a major hurdle to the introduction of new photonic developments into the consumer market, and one that can only be solved by cost-efficient assembly solutions. The MASSTART project will tackle exactly this problem with a well-chosen consortium dedicated to the development of a high-throughput assembly line for transceivers for the Terabit/s era. Briefly:

  • MASSTART aims to provide a holistic transformation to the assembly and characterization of high-speed photonic transceivers, including a six-fold improvement in throughput. By bringing the cost down to €1/Gb/s or even lower in mass production, this will help guarantee European leadership in the photonics industry for the next decade.
logo-masstart
  • ficonTEC will develop concepts and assembly solutions for the automated mass production of photonic devices. A key aspect is the concatenation of different assembly stations into a single integrated production line with automated part handling. Orchestrating the whole via a higher-ranking process control will achieve the required high throughput.
  • The first process demonstrations have been completed, and an initial machine concept comprising four passive adjustment stations has already been presented. In addition, new module plug types will be introduced to help provide more flexibility and reduce assembly overhead.

The developments performed within MASSTART will allow ficonTEC to maintain its technological leadership within the photonics assembly segment, provide better understanding of future industry demands, and thereby strengthen our position in the market – all while helping to guarantee European leadership within the global photonics industry.

MASSTART is an EU-funded H2020 project pursued by a consortium of renown European organizations and is due to run from January 2019 for 36 months.

YouTube

By loading the video, you agree to YouTube's privacy policy.
Learn more

Load video

JePPIX Pilot Line (supported by InPulse)

InP PIC manufacturing eco-system

Indium phosphide (InP) photonic integrated circuit (PICs) offer game-changing performance capabilities across multiple market sectors. The goal of the JePIXX Pilot Line is to put in place the technological and operational processes to accelerate the uptake of InP PIC technology in new markets, align scalable and interlocking services and value chains, accelerate time to market with predictive design for fewer and faster design cycles, and to offer foundry processes at TRL7, sharing process optimization across products.

Within the JePIXX Pilot Line project, ficonTEC will drive forward the acceleration and standardization of PIC device test procedures to high-throughput processes that are compatible across measurement domains. This will be accomplished using customizable, yet standardized scripting formats for testing and characterization in the optical and radio-frequency domains. Testing can be accelerated by utilizing state-of-the-art robotic handling and highly optimized optical alignment procedures.

logo-inpulse

The JePPIX Pilot Line is financially supported by the InPulse project, an EC-funded H2020 Manufacturing Pilot Line project for PICs utilizing indium phosphide, starting January 2019 and running for 48 months. Access to InPulse technology is via JePPIX, the Joint European Platform for Photonic Integrated Components and Circuits.

YouTube

By loading the video, you agree to YouTube's privacy policy.
Learn more

Load video

AIM Photonics

A national PIC manufacturing infrastructure, widely accessible and inherently flexible

AIM Photonics (American Institute for Manufacturing Integrated Photonics) is an industry-driven public-private partnership that focuses the US’s premiere capabilities and expertise to capture critical global manufacturing leadership in photonics.

The Institute’s goal is to emulate the dramatic successes experienced by the electronics industry over the past 40 years and to transition key lessons, processes, and approaches to the photonic integrated circuit (PIC) industry. In doing so, AIM Photonics aims to support SMEs, providing practical access and technology on-ramps for US industry, government, and academic communities.

logo-aim-photonics

ficonTEC is closely following this initiative and ficonTEC US has already been selected among a list of suppliers. Our first contribution comes through the award of a contract for a new wafer-level automated tester, working in close cooperation with UoC (University of Columbia), SUNY (State University of New York), and RTI (Rochester Technical Institute).

YouTube

By loading the video, you agree to YouTube's privacy policy.
Learn more

Load video

YouTube

By loading the video, you agree to YouTube's privacy policy.
Learn more

Load video

PIXAPP

The world’s first open-access
Photonic Integrated Circuit (PIC) Assembly and Packaging Pilot line

Consisting of a highly interdisciplinary team of Europe’s leading industrial & research organizations, PIXAPP’s goal is to help exploit the breakthrough advantages of PIC technologies by providing users with single-point access to PIC assembly and packaging.

In avoiding what is probably the most significant bottleneck in developing competitive photonic devices, the challenge is to create accepted design rules and standards for photonics packaging, including automatization of the processes and of mass-scale testing, so as to reduce the overall cost of PIC-based products.

Vimeo

By loading the video, you agree to Vimeo's privacy policy.
Learn more

Load video

The PIXAPP initiative covers five main aspects: design, materials, devices, applications, and equipment. ficonTEC’s role within the project is to target improvements and innovations of existing and future photonics assembly and testing equipment.

PIXAPP is a Horizon2020 ICT 2016 funded project and is scheduled to run until the end of 2020.

logo-pixxap-photonics
echnologies-capabilities-projects-initiatives-pixapp-01
Acknowledgment: pixapp.eu

Lasclad (completed)

Automated strip-&-cleave of optical ribbon fibers

The increased demand of photonic components worldwide and optical fibers and fiber ribbons in the photonics industry in particular leads to a demand for automated preparation solutions of optical fibers inside fully automated micro-assembly equipment. The goal is to achieve high reproducibility, high optical quality and high parts yield, while using alternative approaches for preparing fibers compared to manual fiber preparation.

Within the Lasclad project, a machine-integratable solution for an automated strip-&-cleave module was developed, including an automated CO2 laser-based process for a optical 12-fiber ribbon. Proof of concept has already been achieved. Further process optimization will improve the mechanical and optical quality and speed even further.

The development of this project is done in close collaboration between ficonTEC, Nyfors Teknologi AB in Stockholm, Sweden and the Fraunhofer Institute for Applied Optics and Precision Engineering (IOF) in Jena, Germany. The work was funded by the Eurostars Programme under grant #E!11443 Lasclad, together with financial support from the German Federal Ministry of Education and Research (BMBF).

UPDATE: The results topic has been demonstrated in our webinar on Fiber Assembly, where we also present a concept for a complete system capable of the entire fiber ribbon production workflow. Development of this capability is continuing further together with Fraunhofer IOF.

LaReBo (completed)

Laser-assisted low-stress reflow bonding of opto-electronic components

LaReBo was an investigation of a laser-assisted reflow bonding process for photonic components. The aim was to increase accuracy and component density, thus enabling smaller package sizes and so address novel products and new markets. The enabling technology is transmission laser-soldering with an absorption of laser radiation localized to the bond zone. Process knowledge was generated for automated bonding complete with an integrated process chain from component to package, and destined for economic, high-throughput and high-yield manufacturing.

ficonTEC’s role within the project was to provide an appropriate bonding machine equipped with a laser-assisted soldering module.

LaReBo was a Horizon2020 eurostars project and ran until late 2018.

PHASTFlex (completed)

Fully automated, high-precision, cost-effective assembly for next-generation hybrid photonics

PHASTFlex proposed an innovative solution, in which InP PICs with active optical functions are actively aligned with passive, free-etched dielectric waveguide TriPleX™ PICs bonded onto an LTCC (ceramic) carrier, allowing a fine alignment of the waveguides in two lateral and one rotational axes. ficonTEC developed a unique assembly machine in which the coarse alignment of the chips on a common substrate as well as the active fine alignment of the waveguides could be performed in an automated assembly process.

The project’s goal was to develop a complete assembly process and the required tooling to implement this concept, including pre-assembly using eutectic bonding and automated handling, with on-chip micro-fabricated fine-alignment and fixing functions.

PHASTFLex was an FP7 funded STREP. It started on January 1, 2014 and was originally scheduled to run for 36, later 44 months.

technologies-capabilities-phastflex-logo
technologies-capabilities-phastflex-system
Acknowledgment: phastflex.eu
technologies-capabilities-application
Acknowledgment: phastflex.eu

The project aims to develop a complete assembly process and the required tooling to implement this concept, including pre-assembly using eutectic bonding and automated handling, with on-chip micro-fabricated fine-alignment and fixing functions.

PHASTFLex is an FP7 funded STREP. It started on January 1, 2014 and was originally scheduled to run for 36, later 44 months.

AutoFly (completed)

Automated assembly and bonding technology for
micro-optics and butterfly modules

The AutoFly project was initiated for the development of a fully automated, high-volume-capable process flow for the production of photonic devices. Core activities included development of innovative and automation-capable optical system approaches and concepts that additionally support the transition from manual to automated production. These approaches should be easily transformable into corresponding, fully automated assembly and attach technologies.

The project produced an automatically packaged 808nm laser module. The package can be hermetically sealed for application in harsh conditions. The high-precision mounting of a double-sided single lens with an innovative optical pick-&-place module was fully automated, with active alignment used to achieve a highly collimated and aligned free beam. This makes the system particularly suitable for sensor and interferometer applications.

AutoFly was a BMBF funded project and ran until 2015. Project partners were Fraunhofer IZM and eagleyard Photonics.

projects-initiatives-autofly-package